The University of Jordan

Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2014/15

Biochemistry practical (1203252)

Credit hours	1	Level	2 nd year	Pre- requisite	-
Coordinator/ Lecturer	Prof. Dr. Yasser K. Bustanji Dr. Areej Assaf Dr. Violet Kasabri	Office number	<u>bustanji@ju.edu.jo</u> <u>areej_assaf@ju.edu.jo</u> <u>v.kasabri@ju.edu.jo</u>	Office phone	
Course website	-	E-mail		Place	Pharmacy

Provides hands-on-bench and complementary practices reacted to principle information concerning the chemical and physical properties of biomolecules (carbohydrates, lipids, amino acids and proteins) and their interrelated functioning in a biological system. The topics of enzymes and relevant enzyme inhibitors are also covered.

Learning Objectives

This course is the practical course in support of a two-semester sequence in biochemistry theory. The students are expected to:

- 1. Demonstrate a good awareness and understanding of biochemical principles
- 2. Understand the main concepts regarding the chemical and physical properties of key organic molecules used by living systems (proteins, amino acids and peptides, carbohydrates, fatty acids and lipids)
- 3. Know the basic concepts and kinetics of enzymes, protein structure and function, regulatory strategies in enzymes, and lipids' classes.

Evaluation	Point %	Date
Midterm Exam	30;	
	20: practical	7 th week
	10: theory	
Assignments:	20;	
	10: reports	Throughout 12 weeks
	10: evaluations	
Quizzes	10	3 out of 12 weeks
Final Exam	40;	
	25: practical	12 th week
	15: theory	

Evaluation

ILOs: Learning and Evaluation Methods

ILO/s		Learning Methods	Evaluation Methods
Α.	Knowledge and Understanding	Practicals and solving	Exams [theory +
В.	Intellectual skills (cognitive and	problems	practical],Quizzes

analytical)		
C.	Transferable Skills:	

Reference/s:

-Lab Manual

ISBN	Title	Author	Year
716712261	BIOCHEMISTRY 4TH EDITION	STRYER, LUBERT	1995C
	BIOCHEMISTRY LIPPINCOTT'S	CHAMPE, PAMELA; HARVEY,	
	ILLUSTRATED REVIEWS, 4TH	RICHARD; FERRIER, DENISE;	
781769604	EDITTION	COOPER, MICHAEL	2008C
	LEHNINGER PRINCIPLES OF		
7167743396	BIOCHEMISTRY	LEHNINGER, ALBERT	2005C
	HARPER'S ILLUSTRATED	MURRAY, ROBERT K. (ROBERT	
9780071765763	BIOCHEMISTRY-27ED.	KINCAID)	2012
	ESSENTIALS OF HUMAN		
0272797138	BIOCHEMISTRY	PATERSON, COLIN RALSTON	1983

Intended Learning Outcomes (ILOs):

Successful completion of the course should lead to the following outcomes:

A. Knowledge and Understanding: Student is expected to develop Intellectual skills (cognitive and analytical) via learning:

- A1. Introduction
 - Key organic molecules are used by living systems
 - Weak Interactions in Aqueous Systems
 - Ionization of Water, Weak Acids, and Weak Bases
 - Buffering against pH Changes in Biological Systems
 - Water as a Reactant

A2.Carbohydrates

- Monosaccharides Are Aldehydes or Ketones with Multiple Hydroxyl Groups
- Complex Carbohydrates Are Formed by Linkage of Monosaccharides

A3. Lipids and Cell Membranes

- Triacylglycerols Are Highly Concentrated Energy Stores
- Fatty Acids Are Key Constituents of Lipids
- Important sterols like Cholesterol

A4. Amino acids and Protein Structure and Function

- Proteins Are Built from a Repertoire of 20 Amino Acids
- Different classes of amino acids and their identification tests and protocols
- Spectrophotometric determination of serum albumin levels
- Problems

A5. Enzymes: Basic Concepts and Kinetics

- Enzymes Are Powerful and Highly Specific Catalysts
- Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes
- Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State
- The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes
- Enzymes Can Be Inhibited by Specific Molecules
- Enzyme inhibitors of different modes can be successful drug candidates
- V_{max} and K_{M} Can Be Determined by Double-Reciprocal Plots

- Problems on competitive and non competitive enzyme inhibitors
- Substrate concentration, reaction pH and temperature can enzyme catalyzed reaction velocity
- B. Subject specific skills
- C. Transferable Skills: Student is expected to

C1. Develop of problem solving and critical thinking skills.

C2. Use oral communication to effectively transmit ideas and conclusions to a scientific audience.

C3. Calculations of Vmax and Km in enzymatic assays. pH measurements and subsequent calculations. C4.Determinations and evaluations of concentrations of blood samples' parameters using spectrophotometry (Blood glucose, blood cholesterol and blood albumin)

Course Contents

Week 1	BASIC TECHNIQUES	ILO/s
2	BUFFER SOLUTION	A & B &C
3	SPECTROPHOTOMETRY	A & B &C
4	MEASUREMENT OF PLASMA GLUCOSE &	A & B &C
	CHOLESTEROL	
5	IDENTIFICATION OF CARBOHYDRATES	A & B &C
6	DETERMINATION OF LIPIDS	A & B &C
7	MIDTERM EXAM [theory+ practical]	A & B &C
8	IDENTIFICATION OF PROTEINS AND AMINO	A & B &C
	ACIDS	
9	MEASUREMENT OF TOTAL PLASMA PROTEINS	A & B &C
	AND ALBUMIN	
11	ENZYMES and ENZYME INHIBITORS	A & B &C
12	FINAL EXAM [theory + practical]	A & B &C

Learning Methodology

Practicals related to unknown identification and quantification and problems solving, in addition to exams.